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1. Introduction 
Microfiche (MF) 

It is plausible that, i f  f(x,y) h 0 for  all x and y, every . 

solution of 

0. 

x + f(x,fi)% + g(x) = p(t) (1.1) 

w i l l  be bounded, t h i s  suggestion being subject t o  the proviso that  the 

equation 

a linear differential  equatioa exhibitiG resonance. 

that  if f(x,y) > 0 

(1.1) w i l l  eventually satisfy 

+ g(x) = p( t )  should be ( in  some sense) clearly different frm 

We might indeed expect 

io  a considerable part of the plane every solution of 

Ix( t) I + I%(t) 1 < B where B is  833. absolute 

const ant . 
In th i s  note I construct an equation of the form (Ll), as near as 

desired t o  the equation 

0. + x = -8 s i n  3, 

which has a one-parameter family of unbounded solution8q 
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h-oof of Theorem 2; Suppose x(t) is the solution of (4.1) with 

g(0) = 3 and 4 0 )  = A, A being large, and write B = x(p), where P 
is the smallest positive t malring %(t) = 0. Write x*( t )  for the 

solution of (4.3) with xl(p) B, f'(p) = o and write t(y, p, B) snd 

t'(y, p, B) 

respective*. Since, evidently,' B = A + ~(1) and p = g(~- l>  the 

hypotheses of Lemna 8 are satisfied. We have therefore 

for the functions inverse t o  A t )  = %(t) and yl(t) = nl(t) 

0 = t(3, B, B) > tI(3, P I  B) 

except when (4.5) holds, that is, in terms of the original Functions, 

P(0 )  < 3 except when f(x(t), k(t)) = 0 for 0 d t s BO 
- 

the. exceptional case x(t) = x*(t)  for all t, and hence 

f(x(t), x(t)) = 0 for 0 S t d p if and only if this holds for a l l  t. 

men t l (  3# p, B) < 0, write -8 f o r  its Value. Evident- xl( t )  

obtain 

which at once gives %(-) < 3. 
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T ~ O M  1. It is possible so t o  define the contixous functions 

f(x,y), 

and g ( x ) ,  eoual t o  x i n  1x1 2 1, that every solution of 

2ositive i n  the half-striE x > W ,  0 < y < 3 zr;d zero elsevhere, 
C 

- - 
0. 

x + f(x,P)% + g ( x )  = -8 s in  3t 

every small positive E it i s  possible t o  define such Functions f(xJy) 

- and g(x) w i t h  the additional proDerties that 

8 

f o r  a l l  X,Y. 

W e  shall proceed by modifying (1.2). Cleazly any solution of this 

linear equation can be written as x = R cos ( t  - p) + s in  3tJ 

say that any solution of the system 

which IS t o  

can be written 

y = -R sin (t - p) + 3 COS 3. 

H a v i n g  this explicit form f o r  solution curves i n  (x, yJ t)-space, we can 

easily (aEd i n  more than one way) determine tubes on which they lie; we shall 



8 

need the particular result that  aw solution curve r a ins  on a t u b e  

Althaugh it is tempting t o  say that ( i n  whatever sense may be relevant 

t o  our work) such a tube w i l l  be %ear enough" t o  a circular cylinder 

having the - t-axis as axis of symmetry, it w i l l  qpear  from our calculations 

th r t  the directions of normalst0 tubes and cylinders are not near enough 

f o r  us t o  deduce the boundedness of solutions of (1.1). This clash between 

a plausible guess and exact knowledge may serve t o  -lain in a geometrical 

way why the plausible suggestion f o r  (1.1) is false. 
8 

The unit inward normal t o  the tube (1.4) is  a positive multiple of 

and we can assert that  a vector 2 at (x,y,t) points aut of the tube if  , r  
- . I  

I ',. E < 0. In particular the vector (%,$,l) corresponding t o  the modified 
w. 

system 

goints aut of the tube when 

f y  ( y = 3 cos 3t) < 0. 
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When t = 0, ZT, 4n, ... this condition is  satisfied in O < y < 3 

for any choice of positive f, This suggests that, for sone positive H, 

we should t r y  t o  detembe f(x,y), positive in x > XY, 0 < y < 3, i n  

such a vay that any solution curve of (1.5) which had x large and 

y = 3 fo r  t = 0 would next have y = 3 and x positive when t = 2r. 

However, as we shal l  show in $4 (as Theorem 2), such a determination is not 

possible; we, therefore, arrange that y = 3 successively a t  t = 0, 

ET, 47r, ... by changing x into . cubic polynomial for 1x1 5 1, . pro- 

cedure which unfortunately leads us into some calculations. 

2. Estimates for special equations 

We shall first show how t o  determ$ne an h(x,y) having all the 

properties asserted of f except continuity on the boundaries of the half-strip. 

Since the signs of coefficients are important i n  the discussion w e  need t o  

give the calculations i n  some detail; it w i l l  be convenient t o  set  them out 

as a string of lemmas concerning the equation (1.2) and i t s  two perturbations 

n + rfc + x = -8 sin 3 

and 

D #  x + x  + p ( ~ 3  - X) = -8 s in  3, 

where X and p are parameters. It is t o  be observed thzt although they have 

notation i n  comnon, the lemmas are independent of one another, Finally we 

. . . . . .  . . . .  . . . . . . . .  . ... - ............... - .... ... -. ......... 
. . .. . . .  . . .  . . . . . . .  . . . . .  . .  . . . . . .  ..... . - .  . . .  

______....c _ _  
,"  - -. 
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show that our h(x,y) can be modified t o  give a continuaus f(xJy). 

A l l  our variables and parmzters are real. W e  shall  specify 

the largeness of our solutions by using parmeters A,, and shall allow 

ourselves the license of 

Ai + 

convergent f o r  91 ’ a> 

A 

saying that a Arnction which admits an expansion 

i s  analytic i n  A ; ~  for  large A We 
io 

consistently assert the analytic dependence of the solutions of our differential  

equations on the parameters and i n i t i a l  values. W e  make no deep use of 

this analyticity, and indeed could neglect it at the price of calculating 

additional error terms; w e  shall exploit it i n  the proof of Theorem 1 so 

as t o  speak unambiguously of “the terms free of x ana p” i n  q g ( ~ , ~ , p ) .  

Although the geometrical point of view motivates our construction w e  

shall  not appeal t o  it expl ic i t ly  i n  the calculations but instead estimate the 

change of the non-negative function R 2 (XJyJt) defined by When 

we are working w i t h  a function x(t), we shall abbreviate 

R2k( t )  , y( t )  , t )  t o  R2( t) without special mention. 

1. suppose i s  large and 1x1 small,  and let  

cq = %( Ao,X) be the least  Positive 

x(0) = Ao, n(0) = 3 %(t) = 0. 

t such that the solution of (2.1) w i t h  

Then ‘9 4%) are analytic tn - 



.. 
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Replace (2.1) by the system 
8 

write x = Aoz and change t o  y as independent variable, obtaining 

.-1 

The analytic dependence on Ai1 and X of the so1ut;on having t = 0 and 

z = 1 for y = 3 is  now clear. Further, 

az/ax + A - ~ Y  + 24 A ; ~  cos 3t . atlax -1 0 = A o  . 
(z + Mily + 8 Ai1 sin 3t) 2 



If the maximcM of l&/axl i n  0 S y d 3 is  attained where y = p, we 

see, by integrating between 3 and pJ that 

Since, similarly, maXIaz/aXl S 6Ai2  M w e  obtain 

which implies (2.3). The estimate of x( cq) is  Mediate and since 

an integr&ion gives $( - #(o). 

~. . . .  
. . . . __. . - . . . . . . -. . . . . . - . .-. _ _  -. .. . - . -. 

. .. . . .  . .  . . . .  . _I__ . . . . . - .  _ _  . .... - - -  
. .. . - . 

.... , . ,  - - - - - -  - - -  

. .  



LEMMA 2. Suppose A,. is  large and let % bethe  least t 

exceeding '4 such that the solution of (1.2) with x( '9) = %, %( '9) = 0 - 
has - x(t) = 1. - Then cp2 a x  %Q) ere analytic i n  5' 5 '9, 

]CIEMMA 3. Suppose ~2 is  large end small, and let n 

cp3 = cpdA2, P, '9) be the least t exceeding; ~1; !  such that the solution - 
- of (2.2) with Y( '9) = 1, 2( 9) = 0% 

dt) -1. 'Jb'hen 93 

f ~ ' c p ~ )  me analytic in sl, p 'pr 

. .  .- ._ . . .. 

i 
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In the interval -1 S x S 1 we have the approximate first integral 

P + (1 - p)x2 + 3px4 = 4 + 2 (1) 

whence we obtain our estimates for cp and “‘5). 3 

The asserted analytic behaviour is  evident when we  write 5 = y = -%w 
and replace the given equation by the system 

We have Further 

and by working much as i n  Lemma 1 we obtain as a first esthate that 

in -1 S x S 1. The approximate equatians 

_.- 



can now be solved to e v e  

which leads t o  (2.6) when we put x = -1. 

TO find R~( cp 

even parers of x w i l l  contribute t o  the integral. In the range we have 

- R~(%> we mst integrate this fiam +1 to -1 and 0- 3 

and 

we see that . 
‘. 

- .._~_. . ~ 
. .  . . . . . . . . .. . . . . . .  . - . .  
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m 4, Suppose A is large and let QI, be the least t 3 
exceeding cp2 such that the solution of (1.2) with X(v3) 

and &(%) are analytic i n  .;’ and cpY has x(t) = -1, Then q+ - 
=I, ~ ( T J  = -A3 - 

1 - - I 

= A3 + gl) 

- T + 2 (Ai’), 
. .  . . .  % - 93 



hridently we need only change x and t of Lemma 2 into x* and 

tf, and then write x = -x* ,  t = t* + R . 
I -  6. Suppose 5 is large and l e t  % be the least t 

such that the solution of (1.2) with x( 3) 1, %( 3) zs % 3 exceediq 

has &(t) = 3. Then qg is  analyt IC i n  5' ,and 3, - 
3. h-oof of Theorem 1 

As w a s  foreshadowed by the notation in the lemmas, we consider a 

Function which, i n  successive intervals of t, satisfies the equations 

(2.1), (1.2)J (2.'2), (14, (2.2), (1.2): .more precisely, we consider 

x(t) 

'9 s t s '4 and so on. When we suppose' A~ large and use % =  x(fi), 
-$ = 2( 'g) 

p as parameters, It is clear that, for all i, = A. + g( l), and 

indeed that this holds uniformly 3x1 A, p if, say, 1x1 d 1, Ipl 10 We 

suppose all error terms expressed i n  terms of 

subscripts. 

with 40) = Ao, %(O)  = 3 satisfying (2.1) in 0 d t d fiJ (1.2) in 

etc., we ccunbine the results of the lemmas, carrying X and 

Ao, 
and fram now on drop the 

For sufficiently smaU ]XI ,  lp] and sufficiently large A, we see 

that  96, = %(A, 1, p) sayJ is analytic i n  A=', XJ p and C B p  be expaaded 

as a d t i p l e  power series: The terms free of X and p have the 6um 

%(A, 0, 0) which must be precisely 2?r since when x = g = 0 the three * 

equationi coal3sce into (1p2)J a i  .of whose solutions have period +,- Hence - .- 
7 .  . .  

1 .  

. .  . ., :. . ,. . . .- 

' j  . .  * . r  
. .  . . .... . ! ?  , : ..:. . : 

. . . . . . .  _ _ r  __c_I____._________...-. . . .  - .. ---- ---- --. --- ... . . .  ... L~ . . . . . . . . . . . .  . . . . . .  
~ 

- . . ,..~ . -  . .  . .  . .  - . .  
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and for sufficiently small 1x1 and ]pi we can solve the equation 

T6CAJ 1) = 2r t o  obtain X as a series b e g i e  

We write X(p, A) 

that X(p, A) and p have the same sign f o r  small ]pl and large A. 

for the sum of this series; it is essential t o  observe . 

It is clear that there exist p* and A*j both positive, such that, 
I 

. for 0 < p d p* and A 5 A*, the series (3.2) is  convergent and its 

sum positive and further that, when X is taken equal t o  k(pJ A), 

(i) R2( t) - R2(0) f o r  which we have the estimate (2.4), is 
8 

positive, 

(ii) sin 3 % = sin 3 n/2 + g(~=l )  is negative and sin 3 = 

s in  9 7/2 + g(Aol) is positive, and 

( i i i )  R2(T3 R2(@ R2((9) = R2(%), for which we have the 

Corresponding t o  any estimates (2.7) and (2.8), are greater than 4pAo2. 

p i n  0 < p d p* we define %(x) by 

2 

\ 

we naw proceed t o  define an h (x, Y). For A > A*j take X = X ( ~ J  A) 
P 

in (2.1) and consider the solution with 4 0 )  = Aj NO) = 3. If we write 

'. 



x(t, A) for  this solution it is a consequence of OUT definitions that 

t o  find large A and smaU t such that 

x = A cos t + sin 3 + @(-At cos t + f  cos 3 - f cos t) + ...# 

y = -A sin t + 3 COS t + $X(-A cos t + A t  sin t - (3.3) 
sin 3t +t sin t) + ...’. 

For our purposes we need only note that (3.3) mly . 

. (3.4) x = A  +P(l), y: = -At + 3 +g(At 2 ) 

and that we can throw (3.4) into the form 

t o  which the standard implicit function theorem can a t  once be applied t o  give 
,- 

Aol and t, at least for  x > xj+ = x)c(p) say. We shall define h (x,y) 
i 1  P 

t o  have the constant value 

right i n  the strip, that is, we shall choose H = H(p) 2 xf t o  satisfy 

a subsidiary condition and then, for each x and y with x 2 H and 

0 S y d 3, 

on any such curve l y i ~  sufficiently far t o  the 

determine A t o  satisfy (3.3) and m i t e  h (x,y) = X( p, A) Far 
P 

(x,y) outside this half-strip we define h (x,y)> = 0. However rW is P 
chosen, we evidently have 

.- ~ . . . .  . .  _. 

t 

1 

.- 
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fp(x,y). ~f we write 

? 

I 

.. , 

as x 3 a, uniformly for 0 d y 5 3; our condition on * is that it 

should be so chosen that h (x,y) < p for a l l  x,y. 
c1 

Given a positive E, choose a p < mla (e,p*), take h 
and g,, CI 

for f and g in (l.3), and consider the change of &t) for a solution 

with x(0) = A > rW and %(O) = 3. In the range 0 t o  t, R2(t) increases, 

it is constant in the ranges '9 t o  %, cp t o  % and 5 t o  q& and . 

it increases, in each.of % t o  q3 and 

whehcr 

3 
by 4pAo2 at least, 

4 -  

'R, to ("5, 

Since g(2rr) = 3 we obtain s b l l a r l y  

and by repeating this we see that R2(-b) 3 QD. 

Finally we must show that we can m o d i f y  h (x,y) t o  a contin~aus 
p 



I 

-s 

is a modification of (2.1) which 38 identical with (2.1) In X d y 2 3-1. 

When A. is large and X small  awl positive, write %c(Ao,~) f o r  the 

least positive t such that the rolutian of (3.5) with 4 0 )  = A& 

%(o) = 3 has 2(t) = 0. Then j u s t  as for q i n  1, %c is .-le, 

and w i t h  the accuracy given in (2,3) and (2.4) these estimates are palFd 

i when is written for '9. To verify this i s  tedious but 'straightiorrard, 

and we may suppress the proof since it is clear on general grounds of c&ln- 

uity that same modification of (n.1) must have fhese properties. 

2 and 6 are UnafYected by the nrodiflcation and we caa conibine the results @$ 

our lemmas as above. 

script 3 we obtain the est-te ( 3.1) for (p&(A, X, p), then (3.2) far 

Xc(p, A) and so on unt i l  we have been led t o  define x& = xfc(p). 

Lemma6 

If we m d i f y  our previaus notatians by inserting a s u b  

Much as before, i$ ie possible t o  choose % L xfc so that h (x,y) PC 
defined In tke following mamer should have h (x,y) p: given x and 

y with x IS a$ and 0 d y d 3 determine A t o  sat isf j  (3.3) and write 
PC 

'. 
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and hpC(X,y) = 0 outside this half-strip.’ Evidently h (x, Y) 

continuous except when x = 5, 0 si y d 3. 
I,c 

If we now write 

we have a continuous Amction. Given a positive c choose a I, < mln( e, I,:) 

andtake f 

can now be repeated t o  show that, fo r  any solution with H(0) = A > 3 -k 1 

C’for f and g in (1.3). Our previous argument 
and 5 I, 

.and %(O) = 3, the  corresponding R 2 (t) tends t o  infinity. 

’ 4. The Need to Introduce g(x )  
s 

In  order t o  s ta te  a precise form of the assertion at the end of. 61 

w e  suppose f(x, y) is a given function which 

(i) is continuous and non-negative inside x L H > 0, o s y s 3, 

and is  0 outside, and 

(ii) is such that the solutions of . 

are uniquely dhtemlned by i n i t i a l  values. 

When (i) and (ii) hold we shall say f ,satisfies condition C; with this term- 

inology our result is 
* 

!p~Eom 2. If f satisfies condition C then, except i n  the case 

- when f(x(t), Ht))  - 0 for all t, a solution of (4.1) - with x(0) hrge and 
f(O) = 3 hae %hr) < 3. ? 



. 

It w i l l  be observeU that we have not prescribed that f(x, y) 

will be is t o  be continuaus on the boundaries of the half-strip. 

clear that at the price of some complications in our enuaciationa and 

proofs we could also allow discontinuities inside the half-strip. 
8 

In a range of t in which x(t), a solution O f  (4.l), I s  large 

w e  see that y(t) is decreasing and that 

dt  - a t  1 
dy x + f(x, y)y + 8 sin 3t dy ay '  - = -  
~. . .  

Here t(y) is the function inverse t o  y(t)  and x(y) is an abbreviation 

f o r  x(t(y)); evidently when f satlsfAes candition C we can assert the 

Uniqueness of solutions o f  (4.2). 
equation b 

8Imllarly we can replace the coqparlson 

K t  + x* =' -8 sin 3 

(in which, as throughout this paper, primes are used only as labels) by 

where t t (y)  I s  inverse t o  y*(t)  ard xr(y) is m i t t e n  for x*(t'(Y)). 

LEMMA 7. Suppose that f (x ,  y) satisfies condition C and that 

. -  
. .  '. . 

.- - 
__, ..-. .:.-. I -:.. . .  -._._ -. ... . . . . :. . . . . . . . , . .  
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. 

If, f'urther, there is  an q with 0 d q < 3 such that 

The hypothesis (I) guarantees that the denominstors In 

(x-xt, + f(x, y)y + 8 (sin 3 - sin 3:) 
. a r  (x t f(x, y)y + 8 s in  3t) (xt + 8 s i n  3 : )  

aze ps l t ive ,  and the hypothesis (ii) that sin 3t > sin 3' 

when t > t*. When y = 7, 

when and only 

the numerator of d(t  .. t t ) / Q  I s  positive; .according 

as > 0 O r  q = 0 the numerator of d(x - x')/Q is POFltlve 

or zero, 

both $(y) t '(y) and x(y) - x((y) increase, and are therefore positive, 

. .  
In eitJler case there is an interval t o  the right of y = g In w h i c h  

- _  
? 
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its derivative w a s  positive, 

LEMMA 8, Suppose that f(x,y) satisfies condition C, that B 
t ' 1 is  large and that 0 

(tl(y, p, B), x*(y, p, B)) are the solutions of (4.2) (4m4) pmectivelY 

B < a  7r. If (t(y, p, B), ?(Y, p, B)) 

with t = t' - p x - xt  = B where y = 0, then - 
t(3, $, B) N 3 ,  B, 3) 

with equality if and only if 
8 

If (4.5) holds, then t(y, p, B) = t*(y, p, B) for 0 Y 3 and 

in particular for y = 30 If (4.5)' does not hold there is a yo with 

0 < yo < 3 8uch that 
- 

(4.5) 

(4.6) 

7, ~f 6 if3 smal l  and positive take tt(y, p, B -' e) and xt(y, p, B - B) 
as the t*(y)  and x*(y) of Lenrms 7. When B is large these four AxILctianS 

decrease slowly frorq their  initial values and hence satisfy (I) and (ii) of 

Le-7. Since 

? ' . 



. 

and 

a l l  the hypotheses of Lemma 7 are satisfied with r) = 0. Hence, for 

O < Y S ~ ,  

and 
N 

Let tend t o  0, and then write y = yo; we obtain 

and 

Our result now follows from these and (4.6) by a f'urther applicat,on of Lemma 7. 


